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Surfaces Generated by 
Moving Least Squares Methods 

By P. Lancaster and K. Salkauskas 

Abstract. An analysis of moving least squares (m.l.s.) methods for smoothing and interpolat- 
ing scattered data is presented. In particular, theorems are proved concerning the smooth- 
ness of interpolants and the description of m.l.s. processes as projection methods. Some 
properties of compositions of the m.l.s. projector, with projectors associated with finite- 
element schemes, are also considered. The analysis is accompanied by examples of uni- 
variate and bivariate problems. 

1. Introduction. While the theory and practice of interpolation and approxima- 
tion of functions of a single variable on the basis of a finite amount of information 
is well developed, the same is not true for functions of several variables. When the 
information consists of function values at the points of a rectangular grid, tensor 
product and blended interpolants based on univariate schemes can be employed. 
For irregularly distributed function-value data, the situation is much worse. Finite- 
element techniques are of value, although, in order to produce C1 interpolants, 
more than just function-value information is required. As well, if the distribution of 
data is irregular, only triangular elements seem feasible. Their use has become 
more attractive in view of the recent development of fast and efficient triangulation 
algorithms. Nevertheless, the additional nodal information consisting of derivative 
data must somehow be concocted. 

Least squares approximation by polynomials is in widespread use and is, of 
course, not expected to produce an interpolant. However, as has been shown by 
McLain [7], Gordon and Wixom [4], Barnhill [1], and more recently Lancaster [5], 
least squares approximation ideas can be applied to generate interpolants by 
introducing the notion of moving least squares approximation together with ap- 
propriate singularities in the weights used in such approximations. This method 
includes the metric interpolation technique of Shepard [11]. To date the theory of 
such moving least squares approximants and interpolants is meagre. Here we 
develop the method in a way which allows it to be seen in the context of 
inner-product spaces. This leads to theorems concerning the differentiability class 
of such approximants as well as some other properties of the projection defined by 
this line of attack. These go beyond the results reported by Lancaster [5]. We do 
not give a convergence theory; attention is focussed on geometrical properties of 
the interpolants. 

It is shown that the method determines a projector, say G, from the space of 
continuous functions on a (closed) domain D onto a space of m times differentiable 
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functions on D, with m determined by the basis and other details of the method. 
An interpolating projector P related to G is also introduced, which can result in 
reduced computational effort. Particular versions of the latter process have previ- 
ously been applied in such programs as the SURFACE II package of the Kansas 
Geological Survey. After the preparation of this paper, the recent work of Franke 
and Nielson [3] came to our attention. In [3] too, the projector P is derived as an 
alternative to G, and some practical guidance to actual computation is given. 

In order to isolate certain features of the analysis, we begin by considering the 
moving least squares approximation method without attempting to interpolate. It is 
assumed that a function f: D -- R is to be approximated and that its values fi at the 
points z, e D, i = 1, ... ., N, are given. The domain D is assumed to be the closure 
of a simply connected subset D of R'. For ease of presentation, we shall assume 
n = 2; it is then easy to see that the results apply for any number of variables. The 
development of an approximation Gf tof, on the basis of the available information 
aboutf, is the subject of the next section. 

Thereafter, singularities are introduced into the weight functions employed in 
order to ensure the interpolation conditions Gf(zi) = f,, i = 1, 2, . .. , N, and, in 
Section 6, the variant of the interpolation process mentioned above is examined. In 
Section 9, we discuss composite methods obtained by generating nodal data for 
finite-element methods from local least squares interpolants. 

Since the methods introduced have not been systematically investigated previ- 
ously, the analysis is quite liberally illustrated with examples of both univariate and 
bivariate problems. The graphs are intended to convey qualitative information only 
and are of limited accuracy. 

2. Noninterpolating Moving Least Squares Methods. Given a function f, as in the 
previous section, we determine a global approximating function Gf by first form- 
ing, at each point z E D, a local approximant Ljf, defined in terms of some basis 

{b(')}, 1, n < N, and a local L2-norm. It turns out that GbP') - b='P (see Section 5), 
so it is natural to include the constant function in the basis. If this is the only 
function in the basis, Gf is a moving average and, in the interpolating formulation 
of Section 4, Gf becomes the Shepard interpolant [11]. We assume that the basis 
has the properties 

(i) b(l) 1, 

(2.1) (ii) b(i) E Cm(D), i = 1, .. , 

(iii) {b(')}-l is independent over some set of n of the given N points in 1. 

Now, for each z E D, find coefficients a1(z), i = 1, . .. ., n, so that the function 
n 

(2.2) Li ai (z)b( 
i=l1 

is in a certain least squares sense the best approximation to f. Then define, for any 
z E D, 

n 

(2.3) Gf(z) = LJ(Zf)= ai(z)b(')(Z) 
i= 1 

We will now be more specific about the "least squares sense" and show that G is 
well defined by (2.3). For the approximation of f by LJ, we employ a weighted, 
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discrete, L2-norm induced by a z-dependent inner product for CO(D), where the 
tilde indicates that any two functions that do not differ on the set of given points 
{zi}' 1 shall be deemed equivalent. With the notation 

u = (u(zI), u(z2), , u(z,)j", u E C?D 
the inner product at z is given by 

(2.4) (u, v): uTW(i)v, Vu, v E 

We take for W(z) an N x N diagonal matrix, W(z) = diag(w()(z), .. ,()z) 
defined for each z E D, with positive diagonal elements (but see also Section 7). 
The corresponding z-norm is of course 

(2.5) lull; = (u, u)zj2. 

Now, for any fixed z E D, the unique best approximation Ljf (cf. (2.2)) to f from 
spanf b('))},l in the z-norm satisfies 

(f-Lf,b())2 = O, i = 1, ..., n, 

which implies that the coefficients ai(z) satisfy the normal equations 
n 

,aj(z-)(b('), 0%)) = 0%bi), i = 1, . . .,. n. 
i = 1 

With the convention that ak denotes the kth component of the vector a, these 
normal equations may be written in the form 

(2.6) BW(z?)BTa = BW(z^)f, 

where B is an n x N matrix whose jth row is (b))T = (b(zl), . . . , b?)(zN)) and 
f = (f(z1),... ,f(zN))jT. The independence of the vectors W), which follows from 
independence of { b (i)n}_., together with the positive-definiteness of W(z^), implies 
that BW(z^)B T iS positive-definite. Hence the coefficients ai(zi) in (2.2) are uniquely 
determined and the definition of G by (2.3) is justified. 

This definition implies that, unless W(z^) is in fact a constant matrix, a new 
vector a(z^) must be determined for each z^ E D. The z^ may be replaced by z at this 
stage and Gf is said to be the approximation to f generated by a moving least 
squares method. If W(z) is constant, then Gf is a classical, nonmoving, weighted 
least squares approximation or regression function forf. 

As to the smoothness of Gf, it is elementary to prove that if the bP') E Cm(D), 
i = 1, . .. ., n, and the (diagonal) elements of W, w-J) E C'(D),j = 1, ... , N, then 
Gf E Ck(D), k = min{l, m). This follows immediately from the invertibility of 
BWB at every point of D and the representation (2.3). 

For future reference, we look more closely at the case n = 1. Here, Ljf consists 
of the projection of f, through the z-inner product, on P). Therefore 

N 

b(l) E w(i)(O^fi 
(2.7) L4 = (f, b(' I 7 (b('), b('))2 N 

i=l 
and so (cf. (2.1) and (2.4)) 

N 

(2.8) Li fiv(i)(4 
i=l1 
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where we have put 

(2.9) v , i = 1, .U. , N. 
N 

E w(')(Z) 
j=l 

It is clear that the v(i)(z) satisfy 0 < v(')() < 1 and L v(')( = 1. Hence, for each z, 
LJf(z) = Gf(z) is just a weighted average of the given values of f. In this case, the 
moving least squares method is a moving weighted average method. Therefore, 
when n = 1, 

mint fl, ... * fN } < Gf(z) < max{ fl, . . . v fNY. 

In anticipation of the results of Section 4, where a choice of singular functions for 
the w(i)(z) will result in Gf interpolating the data, we define 

N 

(2.10) Sf: iv'i), 
i=l1 

with the v(i) given by (2.9). In Section 4 this will be the Shepard interpolant [11]. 

3. An Alternate Representation of the Local Approximation. In this section, we 
develop a representation of Lif which will be important in the proof of Theorem 
4.1 concerning the smoothness and representation of interpolating surfaces. The 
idea is just to represent Ljf in a basis for span{ b _' },.1 consisting of a multiple of 
bV') and a basis for the z^-orthogonal complement of bP') in span{b(')}.n1. 

First normalize b 1 and write 

(3.1) ((Z; 1) IbI'II . 2 

[E w(i)(Z)] 

Now, for i = 2, . .. , n, generate functions orthogonal to 3 (l)(zj; *) by subtracting 
from b(i)(.) its z^-projection on f (l)(zj; ). Thus, we define 

UVi(Z; *)= P)(v)- (P() z()Z;.)Al( 

N 
= b(')() - E vi)(z-)b(i)(zj) 

j=1 

using (3.1) and then (2.9). Or, using (2.10), we can write 

(3 2) "(i)(V; ) = )() )-Sb(')('), i =2, 3, . . .,n, 

and observe that, for a fixed z^, u(')(z; .) differs from b'(.) by a constant function. 
It is easily seen that the n - 1 functions of (3.2) determine linearly independent 

vectors u(i)(Z'), i = 2, . . ., n, where 

U)()= [U(i)(Z^ ZJ) ..U(i)('ZN Z)] 

Hence, the (n - 1) x N matrix U(z^), having u(i)(z)T as its (i - I)st row, is of full 
rank. 

Now, consider the least squares procedure of Section 2 applied using the new 
basis f,3, u2, . .. , un. Because of the orthogonality conditions used in the construc- 
tion, a reduced set of n - 1 normal equations is obtained, and we have the 
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representation 

L; ~~~~~~~~~~n 
Lf(.) =(f, 3()(z; .))(l)(z; .) + , (f, u(i)(z; .))2u(i)(z; .). 

i=2 

Using (3.1) followed by (2.9) and (2.10), the first term on the right is seen to be 
Sf(z), and, writing ai -(zi) u (f, u(i)(z; *))z a(z) = ((Z). ( *) , an-l(i)) we arrive 
at 

LEMMA 3.1. The local approximation Lf of f has the representation 

n 

(3.3) LJ(.) = Sf(z) + I a,-l(z)u(')(zi; *) 
i=2 

where u(i)(z; *) is given by (3.2), and a(i) is the unique solution of 

(3.4) U(z) W(z) U T(i)a = U(z) W(z)f. 

On replacing z^ by z, and evaluating at z, (3.3) gives, for the global approximant, 
n 

(3.5) Gf(z) = Sf(z) + a a-I,(z)g(')(z) 
i =2 

where, for i = 2, . . .n, 

(3.6) g90)(z) = u(i)(Z, z) - b(')(z) - Sb(')(z). 

4. Interpolating Moving Least Squares Methods. Evidently, the moving least 
squares approximant Gf, discussed in the previous sections, need not interpolate 
the data. However, an idea apparently due to Shepard [11] and discussed in some 
detail by Gordon and Wixom [41, Lancaster [61, and Barnhill [11 can be employed 
to ensure that Gf interpolates at some or all data points. The principle involved is 
to make w(k) become infinite at the data point Zk if Gf is to interpolate there. For 
the purposes of this and the next three sections, it will be assumed that Gf is to 
interpolate at every data point. Since the values of Gf are computed from those of 
LJ, as in (2.3), it is obvious that the local approximant must satisfy the interpola- 
tion conditions 

(4.1) LZkf(Zk) = fk, k= 1,...,N. 

The case n = 1 is of particular importance. In that case, (3.5) shows that 
Gf = Sf, which is called the Shepard interpolant. First we introduce singularities of 
an analytically convenient kind into the weight functions and indicate some useful 
properties of the resulting normalized weight functions defined by (2.9). A wider 
class of weight functions is considered in Section 7. 

LEMMA 4.1. Let w(i)(z) =z - z{l, with a an even positive integer, z i {z=}ffZ1. 
Then v(i) E C ?(D) and hence Sf E C '(D). Furthermore, Sf satisfies Sf(z,) = fi, 
i = 1, . .. , N, and the v0') satisfy 

(i) v ('9(zj) = ii, i, j = I, . . . , N, 
(ii) 0 < v(')(z) < 1, Vz, and v('A(z) = 0 if and only if z = z,, i #Aj, 
(iii) EN v Vj(Z) = 1, VZ, 

(iv) v(J)(z) -* 1/N as Izl ?- . 
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Proof. The hypotheses concerning the w(i) and the definitions (2.9) of the v0') 
show the latter to be rational functions (in x and y) with nonvanishing denomina- 
tor. Hence v(') E C '(D). The remaining properties of the v0') then follow easily. 

Since Sf = V=1 f0v(), Sf E C (D), and property (i) above shows that Sf(zi) = fi, 
i= 1,...,N. [o 

COROLLARY. grad v0')(zj) = 0, i,j = 1,9.. , N. 

This follows from the fact that v0') E C '(D) and properties (i) and (ii) in the 

lemma. FL 
Since Sf = 2 fiv(0, the property of the Corollary is transmitted to Sf, i.e. 

grad Sf(zi) = 0, i = 1, ... , N. This is the "flat spot" phenomenon associated with 
the Shepard interpolant, which suggests that Sf has limited application to surface 
fitting in general. The flat spots generally disappear, however, when n > 1. Having 

seen the effect on Sf of the introduction of the singularities in the weights, we 

consider the effect on the remaining terms of L;f and Gf (cf. (3.3), (3.5)). It is clear 
that if z^ zi, then the calculation of L2f and Gf(z^) will not involve a singular 

weight in W(z^). Thus both L^f and Gf are in Cm(D \ {zi}) l), since bP') E Cm(D). 
When n > 1, the presence of singularities in the weight functions leads to 

coefficients of the matrix BWBT of (2.6), which become infinite as Z^ - Zk, and 

hence to some difficulty in analysis of the smoothness of the surface defined by 

(2.3). We now show how representation of the surface in the form (3.5) yields a set 
of normal equations having no such singularities in the coefficients. In terms of the 
notation of Section 3, we prove first 

LEMMA 4.2. The functions u('0 and g('l, defined by (3.2) and (3.6), respectively, 
belong to Cm(D) whenever the w0') are defined as in Lemma 4.1 and the bP') E 

Cm(D). Furthermore, for every h E C ?(D) (cf. comments following (2.3)), the inner 
products (u~(i)(; .), h)j are C' functions of z on D. 

Proof. It follows immediately from (3.2) and Lemma 4.1 that u(')(z; ) E Cm(D) 
for every z E D. Similarly, g(l) E Cm(D). As for (u('(z; .), h)j, the only term of 

the inner product that could cause a singularity is given, in a sufficiently small 

deleted neighborhood of a data point Zk, by 
N 

2 wU)(Z)b(i)(zj) 
w(k)(Z)u( )(; Zk)(Z) (Z) b (zk) h(zk) w (')u(')(';wk)(z){(h)(zk 

E W(U)(Z) 
jl 1 

N 

= h(zk)v(k)(Z) E wU)(Z)[b(i)(Zk) - b()(zj)]. 
j=1 
j#k 

Since v(k) E C '(D), and the sum is void in w(k)(zi), and the w(') E C O(D), the 

inner product can be extended to a C X function (of z2) on the whole neighborhood 
of Zk- El 

The local approximation Li is now determined by the orthogonality conditions 

(4.2) (a) (f - Lj1, 1(l)(Zi; .)) 0 = 0 

(4.2) (b) (f- Lj, u?')(z; *))z = 0, j = 2, ... .. n 
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as in Section 3. However, care must be taken in view of the singular weight 
functions in the inner product. With 

n 

L2f = ao0 ((z; *) + E ai- u()(Z; *), 
i=2 

and with a temporary and obvious simplification of notation, the orthogonality 
conditions above yield 

n 

(a) ao(,8(l), #(1%) 
+ 

E ai- 1(u(i), A()^e(f, A(1)) 

(4.3) 
i=2 
n 

(b) ao(13('), u(p)) + E axi_(u('), uU'))2 = (f, u('));, j = 2, , n. 
i=2 

With the exception of (f, /3(1)); which is unbounded as z^-* Zk, a data point, all 
other inner products are well defined on all of D by virtue of Lemma 4.2 and the 
definition of /3(1). But, in a sufficiently small deleted neighborhood of Zk, the system 
is equivalent, by elimination of a0 from (4.3)(b), to 

(a) ao = (f, /3(I)) , 
n 

(4.4) (b) Y a,11(u 0), u(J3)j =(f - ao,8(l), u&J))j 
i=2 

= (f - Sf(z), U(J8z^, j = 2, ... ., n. 

By Lemmas 4.1 and 4.2, the coefficient matrix and right-hand side of (4.4)(b) 
consists of C' elements. The coefficient matrix is positive-definite throughout D, 
and hence a unique C solution (a1, . . . , a,-1) = aT exists for all z E D. Al- 
though a0 is unbounded as z = Zk, a08 (1)(Zj; ) - Sf(z^) E C '(D). In terms of the 
notation of (3.5), and using Lemma 4.2, we thus have 

THEOREM 4.1. Let b(i) E Cm(D), j = 1, .. ., n, and let w() be defined as in 
Lemma 4.1. Then both the local approximant LU and global interpolant Gf belong to 
Cm(D) and have the forms 

n 

(4.5) LJ(z) = Sf(z^) + i a1_(z)u(0)(i; z), 
i=2 

n 

(4.6) Gf(z)= SJ(z) + i ai_1(z)g(i)(Z) 
i92 

where the u(i) and g(i) are defined by (3.2) and (3.6), respectively, and the coefficient 
vector a satisfies 

(4.7) U(z) W(z) U T(z)a = U(z) W(z)(f - Sf(z)b(')). 

The discussion leading to this theorem shows that in working with the basis 
b(l), u2(; *),... , u (z; *) for the determination of Lf, the burden of coping 
with the singular weights falls solely on b(l) and the associated Shepard interpolant 
whose form can be seen in (2.8) and in the first term of the sum in (3.2). Equation 
(3.1) shows that /8(1)(z; *) -O 0 as z -> Zk, a data point. At the same time 

(f, /(l)(z; -))I -* oo. However, the product defining Sf(z) remains finite. 

Theorem 4.1 generalizes an earlier smoothness result of Lancaster [5], provides a 
more natural line of argument, and does not require the "very well-posed" notion 



148 P. LANCASTER AND K. SALKAUSKAS 

introduced in that paper. Furthermore, as we shall see in Section 7, the conclusions 
of the theorem continue to hold under much weaker hypotheses on the nature of 
the weight function. 

We remark that, at the data points z = Zk, k = 1, 2, . .. , N, the system (4.7) can 
also be obtained by forming a weighted least squares approximation with an 
interpolation constraint and then eliminating the Lagrange multiplier. 

Following Lemma 4.1 we referred to the "flat spot" property of Sf. This can be 
considered in conjunction with the fact that Sf is produced by making a least 
squares fit by a constant at every point z of D. This constant is LU with n = 1. 
Thus LU is tangent to Sf at the data points. A similar tangency property can be 
demonstrated when n > 1. 

THEOREM 4.2. grad Lzkf(zk) = grad G(zk). 

The proof of this result requires a little care, but is quite straightforward and is 
therefore omitted. 

5. Interpolating Moving Least Squares as a Projection Method. From the results 
of the previous section, it is clear that G is a linear operator from C?(D) into 
Cm(D). Consequently, Gf has a representation in terms of cardinal functions E(k), 
k = 1, ... , N, having the properties 

E(k)(Zj) =3k1' j,k= 1,...,N, 

and 
N 

Gf= XfkE( 
k= 1 

Any E(k) can be computed by applying G to a function e(k) defined on D such that 

e(k)(zj) = 3kj for j, k = 1, ... , N. 
The fact that Gf interpolates f and uses only the values fi, ... , fN shows that 

G2f = Gf. Thus G is a projector from C0(D) onto M, a linear space of dimension 
N, i.e. Im G = M (where Im denotes the image, or range). It is also easy to see that 
M D span{b(},)-. For, with z #= zk, we may use the normal equations (2.6) to 
determine the coefficient vector a. Putting f = b(k), we have f = B7.k, the kth 
colunm of B T. Then (2.6) has the unique solution a - e(k), so that Gb(k) = b(k) on 
D \ {z1}$=1. By continuity, this can be extended to all of D. The results are 
summarized in 

THEOREM 5.1. The interpolation scheme described in Theorem 4.1 determines a map 
G: C?(D) -- Cm(D) which is a projector onto the N-dimensional space M = 

span{E(k)}ZN C Cm(D). Furthermore, span{b(l)}ff1 is an n-dimensional subspace 
of M. 

Example 1. Consider the interpolating moving least squares (IMLS) method 
applied with one independent variable and four points of interpolation symmetri- 
cally placed on a parabolic arc. The basis functions chosen are bP'9(x) = xi-l, 
i = 1, 2, ... ., n. In Figure 5.1(a) and (b) interpolants are shown with n = 1, 2, and 
3 and inverse second and fourth power weight functions, respectively (a = 2, 4 in 
Lemma 4.1). These graphs illustrate the necessity of including the full quadratic 
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basis if "dimpling" is to be avoided at local maxima and minima of a curve when 
there is only sparse data near the stationary value. The data and fitted curves are 
symmetric with respect to the line x = 0. 

YA 

1 0 - s 

.5 ! x 

\n -3 

F IGURE 5.1 
The i'dimWpling" phenomenon at local mauximna 

(a) Inverse 2nd power weight ftnction 
y 

Lo 

1.0 

,5~~~~~~~~~~4 

.5 ~ ~~. _ 

4% 

FICitTRE 5. 1 
The ;;dimWiling" phenomenon at local mauxirw 

(b) Inverse 4 th power weight function 
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Example 2. The IMLS method (with one independent variable) is applied to six 
pieces of data from a step function as indicated in Figure 5.2(a) and (b). The choice 
of weight functions and basis functions b(i) is as in Example 1. Cubic spline 
interpolants are also shown for comparison. The data and fitted curves are 
symmetric with respect to the origin of coordinates. 

y 

88t 
g ~~~~~~~~....... .. -- spline 

6 n I 

2 

2 .4 6 8 IO 0X 

FIGURE 5.2 

(a) Inverse second power weights 

1.0 AH 

6 ........ spline 
f c ~~~~~~~~n= I 

.4 ------? n= 2 
n=3 

2 4 6 8 10 x 

FIGURE 5.2 

(b) Inverse fourth power weights 

Example 3. This is again a case of IMLS interpolants with one independent 
variable. The data is from eleven uniformly spaced points in [-1, 1] at which ex is 
evaluated. The basis functions are as in Example 1 above and an inverse-square 
weight function is used. We draw the error curves, ex-(interpolant), in Figure 5.3. 
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-.10 _ 

FIGURE 5.3 

The error in interpolants to the exponentialfunction 

The relatively large errors in the case n = 1 (the Shepard interpolant), and their 
oscillatory nature, are to be expected. They are a direct consequence of the 
"flat-spot" phenomenon. 

Example 4. Consider an IMLS interpolant with two independent variables and 
n = 6, the basis functions bV') being 1. x, Y, x2, xy, Y2. In this case a mathematically 
defined function made up of planes and a "mountain", illustrated in Figure 5.4, is 
defined on a rectangular domain. Data points are generated by the random 
selection of 150 points in the rectangle (Figure 5.5) and the function sampled at 
these points to determine the data fj,j 1 . . ., 150. The resulting IMLS surface is 
illustrated in Figure 5.6. 

FIGURE 5.4 
A model problem 
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+ + - 

f + + + + ++ ++ + ' 

+ + + + + 

+ + + + + + 

+ + + +F 4 +4 + + 

+ + + 

+ r + + 

FIGURE 5.5 
150 randomly selected data points 

FIGURE 5.6 

An interpolating moving least squares surface 

6. A Related Projection Method. It is evident that Gf does not have a convenient 
representation for computational purposes and that a new system of equations 
must be solved for each new value z. The following method requires the solution of 
n-1I equations (for n > 2) at the N data points Zk, k = 1, 2, . ,N, and an 
analogue of Theorem 4.2 holds for it as well. 

Let the operator P: C?(D) --> C'(D) be defined by 
N 

(6.1) Pf(z) := v(J)(z) Lz f(z). 
j=l 

Thus, the N local approximating surfaces L jf(z) in span {b('9(z)}nC- are formed 

+ +~~Z 

(implicitly) and Pf(z) is a weighted mean of these surfaces using the normalized 
weight functions. In view of Lemma 4.1 and Theorem 4. 1, Pf E- Cm(D). The 
cardinality properties of the v('9 given by (i) in Lemma 4.1 show that Pf(zk)= 
Lzkf(Zk) = fk, k = 1, . N . . In addition, 

+x + 4 + (z)L f(z) + v(Z) a L f(z) 

axZkf(Z)l 
k = 1, ... ., N 

+x 4 - 
Zk+ 
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because of the cardinality properties of the v(J) and the corollary to Lemma 4.1. A 
similar calculation for the y-derivative completes the demonstration that 
grad Pf(zk) = grad Lzkf(zk). 

Since Pf interpolates and uses only the values fk, it satisfies P2f = Pf and is a 
projector. Furthermore, 

N N 

Pb(k) = , v()L b(k) = b(k) , v(f) = b(k), k = 1, ... ., n 
j=1 j=1 

because Lzb(k) = b(k), and ynI v() = 1 (Lemma 4.1). P is a linear operator, and 
Pf, like Gf, admits a representation 

N 

(6.2) Pf = fkF 
k= 1 

where F(k) = pe(k), and the e(k) are as in Section 5. We have proved 

THEOREM 6.1. Given the hypotheses of Theorem 4.1, the interpolation scheme 
defined by (6.1) defines a projector P onto N = span{F(k))_1, 

an N-dimensional 
subspace of Cm(D), and span{b('))7=I is an n-dimensional subspace of N. Further- 
more, grad Gf(zk) = grad Pf(zk) = grad LZkf(zk), k = 1, . .. , N. 

In conclusion, it should be noted that Pf can be defined in the context of Section 
2 by means of (6.1), in which case it is a moving least squares approximant to f. 
Discussion of numerical examples is postponed until the end of Section 7. We 
remark only that, if the surface Gf or Pf is evaluated at many more than N points, 
then the P projector will be the more economical. However, there is an added 
expense in that an additional N x (n - 1) array must be stored (to retain the 
solution of (4.7) at the N data points). 

7. Choice of Weight Functions. In formulating Lemma 4.1, specific hypotheses 
were made concerning the weight functions which admit a concise formulation of 
the results. In numerical practice other choices may be preferred, and we comment 
here on some natural selections. First, if N is very large, it may be deemed 
expedient to truncate the weight functions so that distant points enter with zero 
weight. This is to be done in such a way as to ensure the existence of Gf and 
maintain its continuity class. To this end, let m(i), i = 1, . .. , N, be functions 
having the following properties: 

(i) The support of m(i) is Di, where Di is simply connected and compact, 

z, E D1, m(i)(z) > 0 for z E Di, and m(') E C'(D). 
(7.1) (ii) For any z E D there exist indices i, . . . , ik, k > n, dependent on z, 

such that z E n kl Di and {zi,, . . ., zik) contains a subset of n points 
on which {b')) n. l is independent. 

For the noninterpolating case one might choose w(i) = m(i). Then (2.9) ensures that 
the normalized weight functions v(i) are in CO(D) and are nonnegative. Although 
W(z) (cf. (2.6)) may contain some zero diagonal elements, condition (ii) ensures the 
positive-definiteness of the coefficient matrix of the normal equations, and the 
conclusions of Sections 2 and 3 remain valid. In particular, Gf E Ck(D), where 
k = min{l, m). 
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In applications it may be convenient to take for each Di an open disc of some 
radius p, centered at zi. Then the only data points entering the calculation of Gf(z) 
are those satisfying I z - ziK < p. Clearly, p must be chosen large enough so that 
conditions (7.1) are satisfied. If a standard regression surface is desired, p can be 
taken so large that D c D,, and m(' = 1, i = 1, . . ., N. It may also be useful to let 
p depend on i in order to cope with problems in which the density of points shows 
large variations from one region to another. 

In the case when interpolation is desired at some data point zi, a suitable singular 
weight must be introduced for that point. This is sufficient, for the procedure is 
local. Thus, as a generalization of the choice made in Lemma 4.1, an appropriate 
choice is 

(7.2) w(i)(Z) = m(i'(z)Iz - z,l, ai < 0 and even, 

where m(i) satisfies (7.1). It is necessary to check the differentiability class of 0) 
when several terms in the denominator, as well as the numerator, can have 
singularities of the type shown in (7.2). This can be accomplished, and one finds 
that, indeed, v) E C'(D), i = 1, . . . , N, and Sf E Cl(D). As in Section 4, the 
orthogonalization process of Section 3 ensures the absence of singularities from the 
calculation of Gf. Hence the conclusions of Theorems 4.1, 4.2, 5.1, 6.1 hold, with 
the minor modification resulting from the differentiability class of the m(). We find 
that Lzf, Gf, and Pf belong to Ck(D), k = min{l, m). 

In most applications it will be convenient to define the weights w(')(z) as 
translates of a standard weight function w(z). When interpolation is necessary, this 
standard weight function has its singularity at the origin. Then w(')(z) = w(z -zi) 
i = 1, . .. , N. This is the procedure we adopt. 

The following numerical examples are in one independent variable and the 
weight function used is 

(7.3) w(x) = {P=2cos 2p() for lxl < p, 

0, for lxl > p. 

Similar effects are expected with the computationally less expensive choice 

W(X) X2 ( JA)+ 

where the suffix + denotes truncation of the argument to zero when (1 - Ixl/p) < 

0. 
Example 5. Here we calculate some cardinal functions on the abscissas -1 (0.25) 

to 1. In each case the weight function (7.3) is used with p = 1. Two Shepard 
cardinal functions are illustrated in Figure 7.1, and we recall that this is the case 
n = 1, common to both the G and P projectors. With a truncated weight function, 
the cardinal functions must clearly have compact support. The rate of attenuation 
of amplitude is of interest and is influenced by the choice of p. One expects higher 
attenuation as p decreases, but recall that there is generally a lower bound on p 
determined by the choice of n. 
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y 

- I.0 - .8 - .6 - .4 -.2 0 -.2 - .4 - .6 - .8 - I.0 X 

FIGURE 7. 1 

Shepard cardinal functions on 9 data points, p I 

For the G projector with n = 2 and 3, there is little visual change in these graphs. 
With n = 2 there is just a little "overshoot" to negative function values on the side 
of nodes away from the data value + 1, this effect being more pronounced with 
n = 3 than in the case n = 2. 

For the P projector with n = 2 and 3, the graphs are almost identical with those 
for G, the swing to negative function values being more pronounced in the case 
n = 2 for P than for G. 

Example 6. Data and basis functions are as in Example 2, and the weight 
function in (7.3) with p = 1. In Figure 7.2 we indicate the results for the G 

projector with n = 1, 2, 3. These results should be compared with Figure 5.2(a). 
The P projector gives similar results. When n = 3, it cannot be distinguished from 

the graph n = 3 in Figure 7.2. The case n = 2 gives a somewhat higher maximum 
than the case n = 3, between x = .3 and .4. 

1.00;_ 

I' 

- 1.0 -.8 -.6 - .4 - .2 j 2 .4 .6 .8 1.0 x 

* * . 0 _~~~~~~1. 

FIGURE 7.2 
The G projection with truncated weight function (cf. Figure 5.2 (a)) 
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Example 7. The data and basis functions are as in Example 3, in which 
approximations for ex on [-1, 1] -are considered. We describe the numerical results 
qualitatively by reference to Figure 5.3. Calculations are described using weight 
function 7.3, with p = 1, and the projectors G and P. When n = 1, the errors 
behave very much as in Figure 5.3, as one must expect since the flat-spot 
phenomenon is retained. The magnitude of the error is similar, if a little larger. 

When n = 2, the error is of a similar oscillatory nature but reduced in magnitude 
by about a half. When n = 3, there is a more dramatic reduction in error-with a 
ratio of about ten. These remarks apply to the G projection. The errors for P are 
comparable to those for G, although generally larger up to a factor of two. It would 
be interesting to know if a theoretical explanation can be found for this phenome- 
non. 

8. Asymptotic Behavior. For all the weight functions discussed, the following 
observation is valid: If we define the diagonal matrix V = (Tr W)-1W, then 

liml,,, V exists; denote it by V0 = diag(vol,... , vtN)). For example, with W as 
in Lemma 4.1, part (iv) of that lemma gives V0 = N-'I. 

For sufficiently large [IZ, both sides of (2.6) can be divided by Tr W yielding 

BV(z)BTa = BV(z)f. 

These equations hold whether or not interpolation is being carried out. The matrix 
B is independent of z; thus a is asymptotic to a constant vector a(?). It follows that 
Li XEk=I a/()b(') and therefore Gf - .. Ia'(03b'h. On the other hand, Pf- 
EN 1v(k)L f. This is a weighted average of the local approximants Lzkf at the data 
points, for E V(k) = 1 implies also N.I V&) = 1. It follows that Pf is also 
asymptotic to a linear combination of the b(i), i = 1, ... , n. 

These observations show that if a polynomial basis is used, then "extrapolation" 
outside, say, the convex hull of the data points can display the usual undesirable 
polynomial behavior. 

9. Composite Methods. The projectors G and P introduced above are computa- 
tionally very expensive. In numerical practice they have been, and are likely to be, 
used as a first step in a two-stage process whose implementation will, in fact, 
restrict the amount of direct computation with G or P. An approach in common 
use is to determine a regular grid of points whose convex hull contains D and use 
information about Gf, say, at the points of the regular grid in order to produce a 
smooth surface by a more familiar tensor product, or finite-element scheme. The 
information required on the regular grid may be values of Gf and its first few 
partial derivatives. The use of such derivative information requires a smoothness 
result like Theorem 4.1, of course. 

If the second stage of interpolation, on the regular grid, is a projection method 
determined by a projector Q, then the surface generated from samples fl, . .. , fN of 
a function f is a representation of the function QGf. However, unless the points 
Z... , ZN are also vertices of the regular grid, QGf wil not generally be an 
interpolant forf at these points. In this case it is clear that the operator QG will not 
be a projector. This process is often described as "moving the data" onto a regular 
grid of points. 
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For many workers applying those techniques the loss of the interpolating 
property is seen as a serious disadvantage. A technique which is gaining in 
popularity is to first form a triangulation of the plane based on the vertices {z} i 1, 
then generate the data]; at these points, together with derivative data sampled from 
Gf at the same points, and use such information to generate, triangle by triangle, a 
C' surface over the whole plane. This is, of course, a "finite-element" procedure. 
Again, there will be an underlying finite-element projector Q, but this time QGf will 
interpolate f. It follows immediately that the composite operator QG determines a 
projector. It should be noted, however, that it will not generally be the case that 
QG = GQ (see [6] for further discussion). 

Consider, for the moment, the selection of an appropriate C1 finite-element 
scheme for use on a general triangulation. Numerical experience shows that 
computation of second order partial derivatives for Gf should be avoided; cf. [10]. 
In general, while Gf may be a good approximation for f, the derivatives of Gf 
become increasingly poor approximations for the derivatives of f as the order of 
derivative increases. Thus, a finite-element scheme, using only function-value and 
first-derivative information at the nodes and having C 1-interelement continuity, is 
desirable. Candidates for such a scheme are associated with Clough and Tocher [2], 
Mansfield [8], and Powell and Sabin [9]. 

Example 8. The data and basis functions are as in Example 4. In Figures 9.1(a) 
and (b) we illustrate surfaces determined by a composition QG which is not a 
projector. The projector Q is defined by a piecewise quadratic rectangular finite 
element requiring only function and derivative evaluations of Gf at the vertices of 
the rectangles (this element is developed from a triangular element of Powell and 
Sabin [9] and is described in detail in the work of Ritchie [10]). First the smoothing 
effect of Q is clear (cf. Figure 5.6 which is a picture of GJ), and the improved 
resolution in going from 8 rectangles (45 nodes) in 9.1(a) to 32 rectangles (135 
nodes) in 9.1(b) is clear. Note that, for these particular examples, the use of Pf 
rather than Gf would not be justified since the number of data points exceeds the 
number of samplings of Pf needed to generate QPf. 

FIGURE 9. 1(a) 

Composition of a moving least squares projector with a 
piecewise quadratic rectangular finite-element projector, 4 x 2 
rectangular grid, 45 nodal values 
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FIGURE 9. 1(b) 

Composition of a moving least squares projector with a 
piecewise quadratic rectangular finite-element projector, 8 X 4 
rectangular grid, 135 nodal values 

Department of Mathematics and Statistics 
The University of Calgary 
Calgary, Alberta, Canada T2N 1N4 

1. R. E. BARNILL, Representation and Approximation of Surfaces, Mathematical Software III, 
Academic Press, New York, 1977, pp. 69-120. 

2. R. W. CLOUGH & J. L. TOCHER, "Finite element stiffness matrices for analysis of plates in 
bending," in Proc. Conf. Matrix Methods in Structural Mechanics, Wright-Patterson A.F.B., Ohio, 1965. 

3. R. FRANKE & G. NIELSON, Smooth Interpolation of Large Sets of Scattered Data, Technical Report 
#NPS-53-79-005, Naval Postgraduate School, Monterey, Calif., 1979. 

4. W. J. GORDON & J. A. WIXOM, "Shepard's method of 'metric interpolation' to bivariate and 
multivariate data," Math. Comp., v. 32, 1978, pp. 253-264. 

5. P. LANCASTER, "Moving weighted least-squares methods," in Polynomial and Spline Approximation 
(B. N. Sahney, Ed.), NATO Advanced Study Institute Series C, Reidel, Dordrecht, 1979, pp. 103-120. 

6. P. LANCASTER, "Composite methods for generating surfaces," in Polynomial and Spline Approxima- 
tion (B. N. Sahney, Ed.), NATO Advanced Study Institute Series C, Riedel, Dordrecht, 1979, pp. 
91-102. 

7. D. H. McLAIN, "Drawing contours from arbitrary data points," Comput. J., v. 17, 1974, pp. 
318-324. 

8. L. MANSFIELD, "Higher order compatible triangular finite elements," Numer. Math., v. 22, 1974, 
pp. 89-97. 

9. M. J. D. POWELL & M. A. SABIN, "Piecewise quadratic approximation on triangles," ACM Trans. 
Math. Software, v. 3, 1977, pp. 316-325. 

10. S. RITCHIE, Representation of Surfaces by Finite Elements, M.Sc. Thesis, University of Calgary, 
1978. 

1 1. D. SHEPARD, A Two-Dimensional Interpolation Function for Irregularly Spaced Points, Proc. 1968 
A.C.M. Nat. Conf., pp. 517-524. 


	Cit r127_c130: 


